

### Exercício 1 - Adaptado de UFRRJ - 2006

Dada a tabela a seguir, em relação à reação 2 HBr  $\rightarrow$  H<sub>2</sub> + Br<sub>2</sub>:

| Tempo (min) | Quantidade de matéria (em mols) de HBr |
|-------------|----------------------------------------|
| 0           | 0,200                                  |
| 5           | 0,175                                  |
| 10          | 0,070                                  |
| 15          | 0,040                                  |
| 20          | 0,024                                  |

Qual a velocidade média, em mol/min, desta reação em relação ao HBr, no intervalo de 0 a 5 minutos?

- a. 0,5
- b. 1,25
- c. 0,125
- d. 0,005

## Exercício 2 - Adaptado de UFMG - 2009

Observe a tabela a seguir, em relação a reação 2  $SO_2 + O_2 \rightarrow 2 SO_3$ :

| Tempo (s) | Quantidade de matéria (em mols) de SO <sub>3</sub> |  |
|-----------|----------------------------------------------------|--|
| 0         | 0,0                                                |  |
| 5         | 1,0                                                |  |
| 10        | 5,0                                                |  |
| 20        | 10,0                                               |  |

Qual a velocidade média (em mol/s), desta reação em relação ao SO<sub>3</sub>, no intervalo de 0 a 20 segundos?

- a. 5
- b. 2
- c. 0,5
- d. 0,2

### Exercício 3 - Cecierj - 2013

Um aluno resolveu testar a velocidade de uma reação química. Para isso, ele pegou dois copos com a mesma quantidade de água, sendo um a temperatura ambiente e outro com água a 70° C.

Ele adicionou um comprimido efervescente contendo 1g de vitamina C em cada um dos copos e determinou o tempo que levava para a completa dissolução do comprimido.

Veja, abaixo, os resultados obtidos:

|                                            | Copo 1      | Copo 2      |
|--------------------------------------------|-------------|-------------|
| Temperatura da água                        | 25° C       | 70° C       |
| Massa de Vitamina C                        | 1000 mg     | 1000 mg     |
| Tempo de dissolução completa do comprimido | 50 segundos | 20 segundos |

Para esse experimento:

- a. Calcule a velocidade média da dissolução do comprimido, em mg/s, em cada copo.
- b. Justifique a diferença encontrada.

#### Exercício 4 - Cecierj - 2013

Você já tentou acender uma fogueira de São João? A grande dica é colocar pequenos pedaços de madeira para acendê-la e só depois colocar toras de madeira?

Por que será?

### Exercício 5 - Cecierj - 2013

O zinco reage com ácido clorídrico diluído segundo a reação abaixo:

$$Zn(s) + 2 HC\ell (aq) \rightarrow ZnC\ell_{2}(aq) + H_{2}(g)$$

Suponha que um aluno, em um laboratório de química, precise dissolver 10 g de zinco em uma solução de ácido clorídrico a 1 mol/L. Em qual das opções, a velocidade seria maior? Você pode marcar mais de uma opção.

- a. Triturar o zinco até ficar pó.
- b. Aquecer a mistura
- c. Diluir a solução de ácido clorídrico usada
- d. Usar uma solução de ácido clorídrico com concentração 3 mol/L.
- e. Esfriar a mistura.

### Exercício 6 - Cecierj - 2013

Você saberia dizer por que a água oxigenada deve ser guardada em frasco escuro? A luz provoca a decomposição da substância peróxido de hidrogênio (água oxigenada), conforme a reação a seguir:

$$H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$$

Para retardar a reação de decomposição da água oxigenada, devemos:

- a. deixar o frasco perto de uma janela, à luz do sol.
- b. adicionar um catalisador.
- c. deixar o frasco aberto.
- d. guardar na geladeira.

### Exercício 7 - Adaptado de UERJ - 2007

A sabedoria popular indica que, para acender uma lareira, devemos utilizar inicialmente lascas de lenha e só depois colocarmos as toras. Em condições reacionais idênticas e utilizando massas iguais de madeira em lascas e em toras, verifica-se que madeira em lascas queima com mais velocidade.

O fator determinante, para essa maior velocidade da reação, é o aumento da:

- a. pressão.
- b. temperatura.
- c. concentração.
- d. superfície de contato.

## Exercício 8 - Adaptado de UERJ - 2005

Quando se leva uma esponja de aço à chama de um bico de gás, a velocidade da reação é tão grande que incendeia o material rapidamente. O mesmo não ocorre ao se levar uma lâmina de aço à chama.

Qual o fator que determina a diferença de velocidades de reação nessa experiência?

# **Gabarito**

## Exercício 1 - Adaptado de UFRRJ - 2006

A B C D

000

## Exercício 2- Adaptado de UFMG - 2009

A B C D

## Exercício 3 - Cecierj - 2013

a. Copo 1:

$$v = \frac{1000}{50} = 20 \frac{mg}{s}$$

Copo 2:

$$v = \frac{1000}{20} = 50 \frac{mg}{s}$$

b. No copo 2 a velocidade da reação é maior devido ao fato da temperatura ser maior.

## Exercício 4 - Cecierj - 2013

Os pedaços pequenos de madeira possuem maior superfície de contato para a ocorrência da reação química. Logo, será mais fácil acender a fogueira com pedaços pequenos de madeira.

## Exercício 5 - Cecierj - 2013

Você deverá marcar as opções: a, b e d.

Exercício 6 - Cecierj - 2013

Exercício 7 - Adaptado de UERJ - 2007

A B C D

○ ○ ○ ●

## Exercício 8 - Adaptado de UERJ - 2005

O fator que determina a diferença de velocidades de reação na experiência citada é a superfície de contato.

